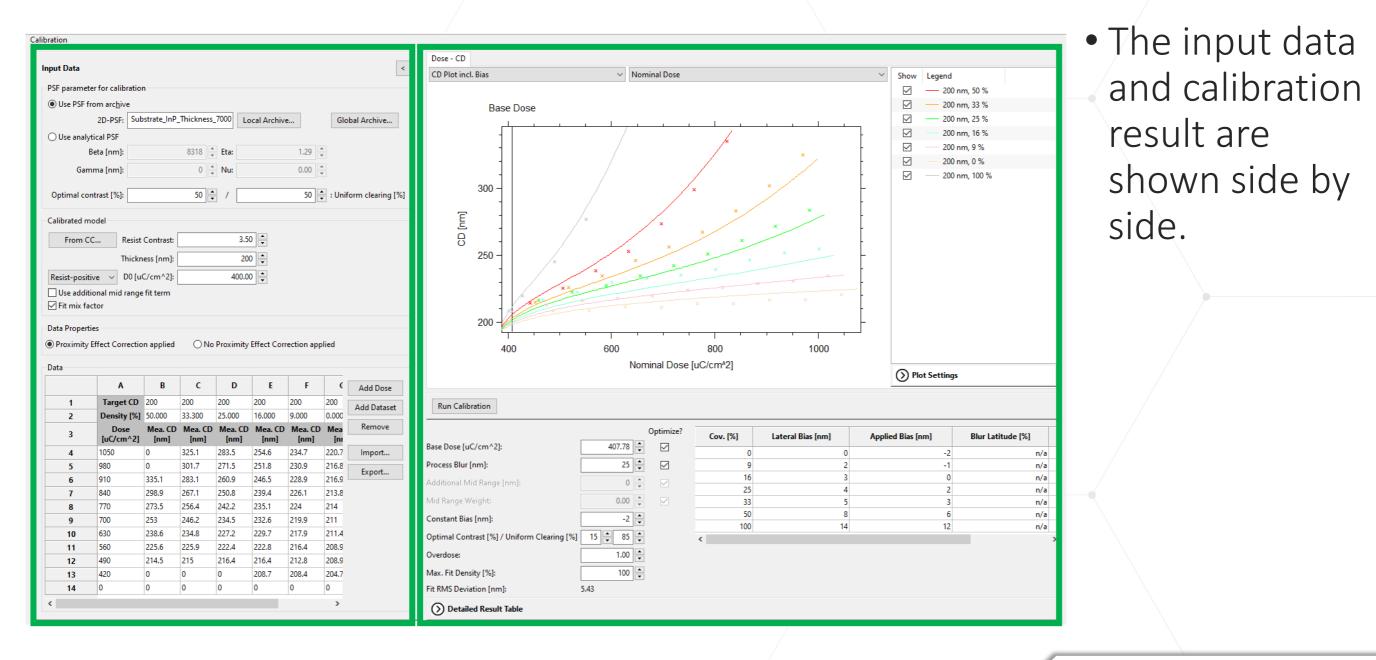


TRACER

What's new TRACER 2.10

What's New TRACER 2.10

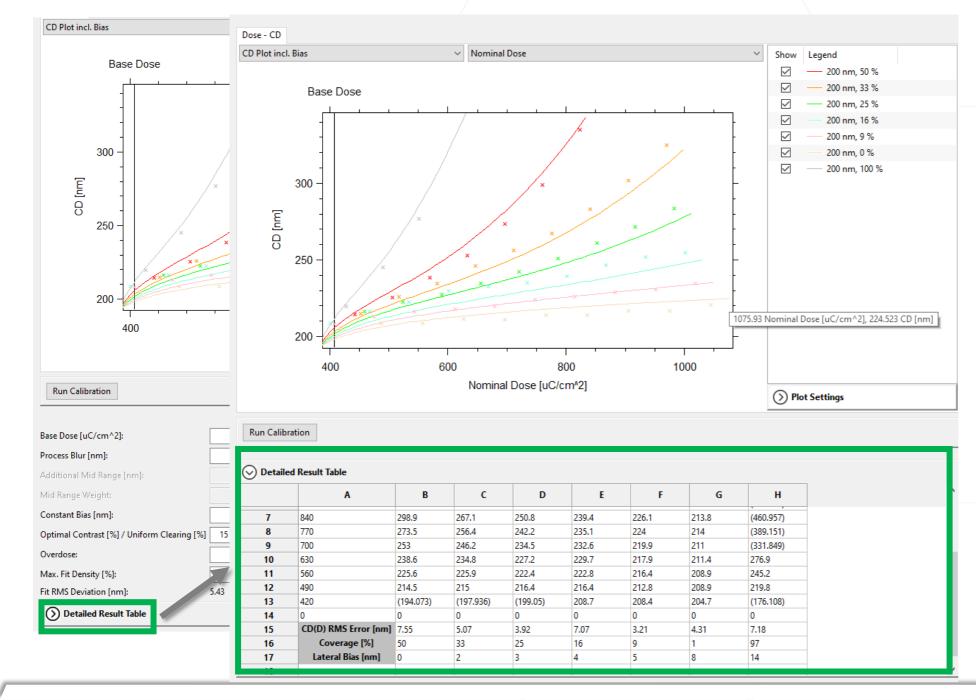

Rework of user interface

- Major rework of the ebeam calibration interface and workflow, to improve the overview of input data and results.
 - easier recalibratio and comparing of results

	tion Store Calibration	t						
Navigator Archive Global 3D-PSF Archive Cocal 3D-PSF Archive Global 2D-PSF Archive Local 3D-PSF Archive Deal 2D-PSF Archive Project - TraceProjecttrpj e MMA450k1minnoOi	Input Data PSF parameter for calibration Use PSF from archive 2D-PSF; Substrate_GaAs_Thickness_700 Use analytical PSF Beta [nm]: 8318 © Eta: 1.23 © Gamma [nm]: 0 © Nu: 0.000 © Optimal contrast [%]: 100 © / 0 © : Uniform clearing [%] Calibrated model From CCResist Contrast: 2.50 © Thickness [nm]: 200 ©						Base Dose	end 100 nm, 50 % 100 nm, 33 % 100 nm, 25 % 100 nm, 7 % 100 nm, 9 % 100 nm, 0 %
	Use addit Data Propert Proximity Data	D0 [uC/cm itional mid range fit t tites Effect Correction ap A Target CD [nm] Density [%]	term pplied () No B 100 50.000	C 100 33.300	t Correction applied	Add Dose Add Dataset		
	2 3 4 5	Dose [uC/cm^2] 700 650	2] Mea. CD [nm] 0 0	148 135	140 11 126 11	7	Nominal Dose [uC/cm ⁴ 2]	ttings
	3	Dose [uC/cm^2]	0	148 135 122	140 11	7 5 1mport 3 Export 4	Nominal Dose [uC/cm*2]	ttings

t Data								
F parame	ter for calibratio	n						
· ·	from archive							
030151		strate_InP_	Thickness	7000	cal Archive		CI	bal Archive
		strate_nr		1000 10	cal Archive	=	GIO	obal Archive
Use anal	ytical PSF							
	Beta [nm]:		8318	Eta:		1.29		
Gar	mma [nm]:		0	Nu:		0.00		
			50			50		
ptimai co	ontrast [%]:		50 🌲	/		50	: Uni	form clearing [%
librated n	nodel							
		. [2.57				
From (.c Resist	Contrast:		3.50				
	Thickn	ess [nm]:		200				
esist-posi	tive v D0[u	C/cm^2]:		400.00				
		L						
	tional mid range	fit term						
Fit mix fa ta Proper			⊖ No	Proximity	Effect Corr	ection app	lied	
Fit mix fa ta Proper	actor ties		⊖ No C	Proximity	Effect Corr	ection app F		Add Dare
Fit mix fa ta Proper Proximity ta	actor ties / Effect Correctio	n applied B	C	D	E	F	¢	Add Dose
Fit mix fa ta Proper Proximity ta 1	actor ties / Effect Correctio A Target CD	n applied B 200	с 200	D 200	Е 200	F 200	¢ 200	Add Dose Add Dataset
Fit mix fa ta Proper Proximity ta	actor ties / Effect Correctio	n applied B 200	C	D	E	F	¢	
Fit mix fa ta Proper Proximity ta 1 2	actor tites r Effect Correction A Target CD Density [%] Dose	B 200 50.000 Mea. CD	C 200 33.300 Mea. CD	D 200 25.000 Mea. CD	E 200 16.000 Mea. CD	F 200 9.000 Mea. CD	© 200 0.000 Mea	Add Dataset
Fit mix fa ta Proper Proximity ta 1 2 3	Actor ties r Effect Correction Target CD Density [%] Dose [uC/cm^2]	n applied B 200 50.000 Mea. CD [nm]	C 200 33.300 Mea. CD [nm]	D 200 25.000 Mea. CD [nm]	E 200 16.000 Mea. CD [nm]	F 200 9.000 Mea. CD [nm]	С 200 0.000 Меа [пл	Add Dataset Remove Import
Fit mix fa ta Proper Proximity ta 1 2 3 4	actor ties r Effect Correction Target CD Density [%] Dose [uC/cm^2] 1050	B 200 50.000 Mea. CD [nm] 0	C 200 33.300 Mea. CD [nm] 325.1	D 200 25.000 Mea. CD [nm] 283.5	E 200 16.000 Mea. CD [nm] 254.6	F 200 9.000 Mea. CD [nm] 234.7	(200 0.000 Mea [ni 220.7	Add Dataset Remove
Fit mix fa ta Proper Proximity ta 1 2 3 4 5	actor ties r Effect Correction Target CD Density [%] Dose [uC/cm^2] 1050 980	B 200 50.000 Mea. CD [nm] 0 0	C 200 33.300 Mea. CD [nm] 325.1 301.7	D 200 25.000 Mea. CD [nm] 283.5 271.5	E 200 16.000 Mea. CD [nm] 254.6 251.8	F 200 9.000 Mea. CD [nm] 234.7 230.9	(200 0.000 Mea [ni 220.7 216.8	Add Dataset Remove Import
Fit mix fa ta Proper Proximity ta 1 2 3 4 5 6	actor ties r Effect Correction Target CD Density [%] Dose [uC/cm^2] 1050 980 910	B 200 50.000 Mea. CD [nm] 0 0 335.1	C 200 33.300 Mea. CD [nm] 325.1 301.7 283.1	D 200 25.000 Mea. CD [nm] 283.5 271.5 260.9	E 200 16.000 Mea. CD [nm] 254.6 251.8 246.5	F 200 9.000 Mea. CD [nm] 234.7 230.9 228.9	(200 0.000 Mea [ni 220.7 216.8 216.9	Add Dataset Remove Import
Fit mix fa ta Proper Proximity ta 1 2 3 4 5 6 7	actor ties r Effect Correction Target CD Density [%] Dose [uC/cm^2] 1050 980 910 840	B 200 50.000 Mea. CD [nm] 0 0 335.1 298.9	C 200 33.300 Mea. CD [nm] 325.1 301.7 283.1 267.1	D 200 25.000 Mea. CD [nm] 283.5 271.5 260.9 250.8	E 200 16.000 Mea. CD [nm] 254.6 251.8 246.5 239.4	F 200 9.000 Mea. CD [nm] 234.7 230.9 228.9 226.1	¢ 200 0.000 Mea [ni 220.7 216.8 216.9 213.8	Add Dataset Remove Import
Fit mix fa ta Proper Proximity ta 1 2 3 4 5 6 7 8	actor ties r Effect Correction Target CD Density [%] Dose [uC/cm^2] 1050 980 910 840 770	B 200 50.000 Mea. CD [nm] 0 0 335.1 298.9 273.5	C 200 33.300 Mea. CD [nm] 325.1 301.7 283.1 267.1 256.4	D 200 25.000 Mea. CD [nm] 283.5 271.5 260.9 250.8 242.2	E 200 16.000 Mea. CD [nm] 254.6 251.8 246.5 239.4 239.4 235.1	F 200 9.000 Mea. CD [nm] 234.7 230.9 228.9 226.1 224	(200 0.000 Mea [ni 220.7 216.8 216.9 213.8 214	Add Dataset Remove Import
Fit mix fa ta Proper Proximity ta 1 2 3 4 5 6 7 8 9	actor ties r Effect Correction Target CD Density [%] Dose [uC/cm^2] 1050 980 910 840 770 700	B 200 50.000 Mea. CD [nm] 0 0 335.1 298.9 273.5 253	C 200 33.300 Mea. CD [nm] 325.1 301.7 283.1 267.1 256.4 246.2	D 200 25.000 Mea. CD [nm] 283.5 271.5 260.9 250.8 242.2 234.5	E 200 16.000 Mea. CD [nm] 254.6 251.8 246.5 239.4 235.1 235.1 232.6	F 200 9.000 Mea. CD [nm] 234.7 230.9 228.9 226.1 224 224 219.9	(200 0.000 Mea [ni 220.7 216.8 216.9 213.8 214 211	Add Dataset Remove Import
Fit mix fa ta Proper Proximity ta 1 2 3 4 5 6 7 8 9 9 10	actor tites r Effect Correction Target CD Density [%] Dose [uC/cm^2] 1050 980 910 840 770 700 630	B 200 50.000 Mea. CD [nm] 0 0 335.1 298.9 273.5 253 238.6	C 200 33.300 Mea. CD [nm] 325.1 301.7 283.1 267.1 256.4 246.2 234.8	D 200 25.000 Mea. CD [nm] 283.5 271.5 260.9 250.8 242.2 242.2 234.5 227.2	E 200 16.000 Mea. CD [nm] 254.6 251.8 246.5 239.4 235.1 232.6 232.6 229.7	F 200 9.000 Mea. CD [nm] 234.7 230.9 228.9 226.1 224 219.9 217.9	¢ 200 0.000 Mea [ni 220.7 216.8 216.9 213.8 214 211 211.4	Add Dataset Remove Import
Fit mix for ta Proper Proximity ta 1 2 3 4 5 6 7 8 9 10 11	actor tites tEffect Correction term term term term term term term term	B 200 50.000 Mea. CD [nm] 0 0 335.1 298.9 273.5 253 238.6 225.6	C 200 33.300 Mea. CD [nm] 325.1 301.7 283.1 267.1 256.4 246.2 234.8 225.9	D 200 25.000 Mea. CD [nm] 283.5 271.5 260.9 250.8 242.2 234.5 227.2 234.5 227.2 222.4	E 200 16.000 Mea. CD [nm] 254.6 251.8 246.5 239.4 235.1 232.6 229.7 222.8	F 200 9.000 Mea. CD [nm] 234.7 230.9 228.9 226.1 224 219.9 217.9 217.9 216.4	C 200 0.000 Mea [ni 220.7 216.8 216.9 213.8 214 211.4 211.4 208.9	Add Dataset Remove Import

PSF parameters


Experimental data: CD measurements for varied doses and pattern densities

ibration							
Input Data							
PSF parameter	r for calibratio	n					
Use PSF from the Use	om arc <u>h</u> ive						
	2D-PSF: Sub	strate_InP_	Thickness_	7000	Local Archive	e	Global Archive
🔿 Use analyti	cal PSF						
Be	eta [nm]:		8318 🌲	Eta:		1.29	
Gamr	ma [nm]:		0	Nu:		0.00	
							1
Optimal con	trast [%]:		50 🌲	/		50 📮	: Uniform clearing [%
From CC Resist-positiv	Thickn	Contrast: [ess [nm]: [C/cm^2]: [3.50 🗣 200 🗣		
Use additio		fit term					4
Fit mix fact	tor 25		⊖No	Proxim	ity Effect Corr	ection appl	ied
Fit mix fact Data Propertie Proximity E	tor 25		⊖ No C	Proxim		ection appl	ied ¢ Add Dose
Fit mix fact Data Propertie Proximity E	tor 25 ffect Correctio	n applied			ity Effect Corr		

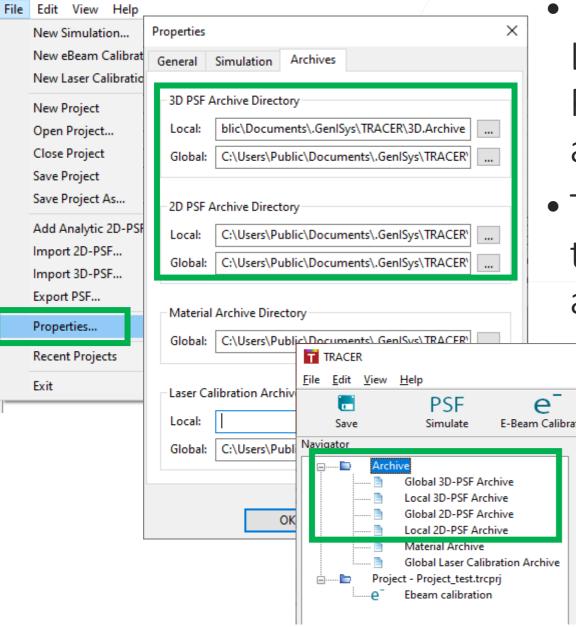
- During model definition,
 - both positive and negative resists are supported.
 - the mid-range term can be activated for a better fit when the mid-range effect is non-negligible.
- The selection in data properties allows
 - calibrations on measurements made on exposure data with or without PEC.

 After clicking on the arrow, the detailed result are shown.

Calibration																				
Land Data									Dose - CD Pro	cess Window	Dose Blur L	atitude vs Bias								
Input Data								<	CD Plot incl. Bia	as v	Nominal Dos	e	~							
PSF paramet	er for calibratio	on																		
Use PSF f	rom archive									Base	Dose									
	2D-PSF: Su	bstrate_InP	_Thickness	5_7000 Lo	cal Archiv	e	Glo	obal Archive					L							
O Use analy	tical PSF								3	50 -		1 1	-							
	Beta [nm]:		8318	È Eta:		1.29	* *			-		/ /	1							
Gan	nma [nm]:		0	Nu:		0.00				-	/									
00.				-		0.000	Ŧ		E 3	00 -		1. /								
Optimal co	ntrast [%]:		50	/		50	🛊 : Uni	form clearing [%]	CD [nm]	1	×	1. 1 .								
										-	1 / /.									
-Calibrated m	odel								2	50 -	1.									
From C	C Resist	t Contrast:		3.50	D 🗧					1										
	Thick	ness [nm]:		20	Þ				2	00 -	× × ×									
Resist-posit	ive ∨ D0 ſu	JC/cm^2]:		400.00					2	· ·			┯╾┯╼┚							
	ional mid rang	-			•					400	600		000							
Fit mix fa	2										Nominal Do	se [uC/cm^2]								
															(July	1+h	o ch	oclu	24
Data Propert									Run Calibratio	20					C	וווע	/ [[]		ecke	2U
Proximity	Effect Correcti	on applied	O No	o Proximity	Effect Con	rection app	blied						_							
Data													Optimize?		r	Dara	me	pters	are	
	Α	В	С	D	E	F	^	Add Dose	Base Dose [uC/cr	m^2]:		511.56			٢					
1	Target CD	200	200	200	200	200	20		Process Blur [nm]]:		19			6	nti	miz	od	are	
2	Density [%]		33.300	25.000	16.000	9.000	0.	Add Dataset	Additional Mid R	ange (nm):		175.301			C	γµu	<u> </u>	eu.		
3	Dose	Mea. CD					N	Remove	Mid Range Weigł	-		0.02		7						
	[uC/cm^2]	[nm]	[nm]	[nm]	[nm] 254.6	[nm]	21	laurat						2						
4	1050 980	0	325.1 301.7	283.5 271.5	254.0	234.7 230.9	22 21	Import	Constant Bias [nr			12		/						
6	910	335.1	283.1	260.9	246.5	228.9	2	Export	Optimal Contrast	t [%] / Unifor	m Clearing [%]		_							
7	840	298.9	267.1	250.8	239.4	226.1	21		Overdose:			1.00]							
8	770	273.5	256.4	242.2	235.1	224	21		Max. Fit Density [[%]:		100]							
9	700	253	246.2	234.5	232.6	219.9	21		Fit RMS Deviation	n [nm]:		5.18								
< 1	600	220.5	224.0	222.2	220 7	217.0	>		() Detailed R	esult Table										

Project File : Project_test.trcprj *

New functionalities



- The maximum correction density for fitting can now be set using an additional input field.
 - This allows an improved calibration for sparse layouts

TRACER

Global and Local PSF Archive

- TRACER now supports storing PSFs to both Local or Global archives, for both 2D and 3D PSFs. When storing to an archive, the user is asked which archive should be used.
- The archive locations must be matched to those used by BEAMER, so that PSFs stored in archives are available in BEAMER's modules.
 - If the archive locations are defined using the program's Properties dialog, the locations for 3D and 2D PSF Local and Global archives must be defined as shown at left.
 - If the archive locations are defined using system Environment Variables, these will need to updated; see the release notes for further details.

BEAMER

Thank You!

support@genisys-gmbh.com

LAB TRACER MASKER

Pro **SEM**

VIEWER

Headquarters

USA Office

GenlSys Inc. P.O. Box 410956 San Francisco, CA 94141-0956 USA

D +1 (408) 353-3951
 ⊠ usa@genisys-gmbh.com

Japan / Asia Pacific Office

GenlSys K.K. German Industry Park 1-18-2 Hakusan Midori-ku Yokohama 226-0006 JAPAN (1) +81 (0)45-530-3306

+81 (0)45-532-6933

 \boxtimes apsales@genisys-gmbh.com