

LAB

What's new v5.9

What's New LAB 5.9

Topogaphy Stack View

2

Topography Stack View

The topography definition has been improved, to allow an easier defition of topographic stacks

• The cross view is avalaible after importing the layout.

- The user can choose between three stack types
 - Planar
 - Air stack
 - Topographic stack

Layer Type Definition

- The stack definitionallwos to choose from five surface types
 - Planar: planar surface
 - Add: underlying topographical layer
 - Add inverse: inverse topography of Add layer
 - Conformal: a layer that "conforms" to underlying topogaphy
 - Conformal inverse: inverse of the conformal layer

Stack Type Topographic 🚿

Color selection

Туре	Material	Thickness [um]	Surface	Conformal Ratio	Layer	Angle [deg]	set color
Resist	AZ1518	0.5	Planar 🗸 🗸		*	90	
Layer	Si3N4	0.1	Planar	0.5	*	90	
Layer	Cu	0.15	Add		2	90	
Substrate	SiO2		Add Inverse		*	90	
			Conformal Inv.				

Add/Add Inverse

5

- The stack definitionallwos to choose from five surface types
 - Add: underlying topographical layer
 - Add inverse: inverse topography of Add layer
 - Example: layer 2(0) is defined as Add or Add inverse.

Surface type: Add

Surface type: Add Inverse

Conformal/Conformal Inverse

- In stack definition, each material is defined with one of the five surface types
 - Example: layer 1(0) is defined as conformal or conformal inverse.

Surface type: Conformal

t: Conventional Thickness

c: Conformal Ratio

Stack Type Topographic 🗸

Stack Type | Topographic | \sigma

Туре	Material	Thickness [um]	Surface	Conformal Ratio	Layer	Angle (deg)	set color
Resist	AZ1518	0.5	Planar		*	90	
Layer	Si3N4	0.1	Conformal	0.5	1	90	
Layer	Cu	0.2	Add		2	90	
Substrate	SiO2		Planar		*	90	

Surface type: Conformal Inverse

What's New LAB 5.9

Topography Stack Example

LAB models the whole stack to check the effect of non-planar substrate.

• The example below shows the effect of copper layer in modification of light intensity along the resist depth: shift of standing wave and hot spot at corners.

Stack definition

Rule OPC

OPC Rule Optimization

Rules in the RuleOPC can be optimized based on the exposure simulation settings, to allow an easier definition of rule parameters.

Advanced Signal Definitions Label/Comment Advanced Signal Definitions Label/Comment	- C X
Advanced Signal Definitions Label/Comment	Speed: 64x
a linitial Layout a Edge Size [um] 0.050000 Min Segment Size [um] 0.100000 Linitial Categories Content of Co	
2 Initial Layout E Edge Size [um] 0.050000 Min Segment Size [um] 0.100000 → 100000 Min Segment Size [um] 0.100000 → 100000 → 10000000 → 1000000 → 1000000 → 1000000 → 1000000 → 1000000 → 1000000 → 1000000 → 10000000 → 1000000 → 1000000 → 10000000000 → 1000000000000000000000000000000000000	
e Edge Size [um] 0.050000 Min Segment Size [um] 0.100000 CC	
e Edge Size [um] 0.050000 Min Segment Size [um] 0.100000	
I I I I I I I I I I I I I I I I I I I	
mer Size [um] 0.150000 Max Segment Size [um] 1000000.000000	
Limit [um] 0.00000	
ayer OPC	
Action Dependence Param Scenario Condition Optimize	
- Corner true Delete	
ition true	
of Serif Manhattan V	
idge Length [um] 0.010000	
Distance [um] 0.055000 Size	
um] %(0.05:0.07)(0.050000)%	
ap [um] 0.010000 overlap	
All Hide Show Centinformation Measurement Info Pick D	
g a step size is optional. Therefore, you can omit the step size together with one of the colons.	
ptimizer Stop Optimizer	757, 1069, 150
OK Cancel Help Undate Preview	151, 1000.155

How to Optimize?

- Enable the "Optimize" check-box enables the Rule Optimizer
 - Select the rule for optimization
 - Then define the variables of the rule to be optimized. The format is
 - %[min value:step:max value]%
 - Finally, press "Start Optimizer"

NOTE: "step" is not a mandatory parameter, it defines the step width used during the optimization.

Immediate Contour Update

- The green bar shows the progress of optimization
 - Optimized value appears next to the variable-range definition
- %[min val:step:max val](optimization)%
 - The resulting contour is diaplyed on the right side
 - The optimization can be stopped at any time, the last value of the optimizer will be used for the variable.

Usability

Temporary Files Compression

• The properties setting controls the compression of temporary files, to reduce the occupied memory

	LAB	
File	Edit View Help	
	New	Ctrl+N
	Open/Import	Ctrl+O
	Close	Ctrl+F4
	Save/Export	Ctrl+S
	Save As	Ctrl+Alt+S
	Library Save	Ctrl+Alt+L
	Merge Material Database	Ctrl+Alt+M
	Print	
	Print Setup	
_	Print Preview	
	Print Preview Properties	Ctrl+P
	Print Preview Properties Recent Flows	Ctrl+P >
	Properties Recent Flows Exit	Ctrl+P >
0	Print Preview Properties Recent Flows Exit Layout Operation	Ctrl+P >
0	Print Preview Properties Recent Flows Exit Layout Operation Extract Transform	Ctrl+P > Grid
0	Print Preview Properties Recent Flows Exit Layout Operation Extract Transform Heal NOT	Ctrl+P > Grid Bias
	Print Preview Properties Recent Flows Exit Layout Operation Extract Transform Heal NOT OR AND	Ctrl+P > Grid Bias
	Print Preview Properties Recent Flows Exit Layout Operation Extract Transform Heal NOT OR AND	Ctrl+P Ctrland Grid Bias XOR

Properties			
General Flow/Module Directories File Defaults			
Copy Log File to Export File Directory			
Copy Flow File to Export File Directory			
Create PNG File to Export File Directory 1000	Number of Pixels		
🗹 Write Logfile			
Create Log Files With Time Stamp			
Write Timestamp to every line of the Logfile			
Write Warnings to Logfile			
Minimize Temporary File Creation		Maximize Recover (Capabilities
No Compression (fastest)	-	Maximum Compres	sion (slowest)
Memory Usage for Simulation Results		8095	MB
File Path Option			
Use absolute path for PSF files			
Save Flow File			
• with relative paths O with absolute paths			
Write protected flow directories			
Add	Delete		
OK Cano	cel Help		
	/		1

Temporary Files Compression

- Compromise between processing time and file size
 - For an example simulation with a large burden,

No Compression (fastest)		Maximum Compression (slowest)
Execution Time: 3843 s Disk Occupation: 234.6 GB		
No Compression (fastest)		Maximum Compression (slowest)
Execution Time: 15396 s (increa Disk Occupation: 102.8 GB (redu	ased 4x) uced 2x)	

14

Laser Exposure Dose

• The base dose for DWL tools is now calculated on maschine parameters.

Laser Exposure	
Region Stack Tool Sim	ulation Analysis Label/Comment
Machine Type	DWL 66+ V
DWL Head	2mm v
Wavelength [nm]	375 ~
Pixel Size [nm]	100
Number of Gray-Tone Levels	0
NA	0.9
Focus Offset [um]	0.000000
Flare Background	0.000000
○ Wafer Parameter	
Beam Size FWHM [nm]	555.555393
Tool parameter	
Gaussian Beam Radius [mm]	1.160740
Focal Length [mm]	2
Exposure Dose	
O Direct Input	 Machine Parameters
Exposure Dose [mJ/cm^2]	14905.5 Power [W] 0.3
	Transmission Filter [%] 100
	Optical Efficiency [%] 100
/	

- The decision for the stack computation method is based on the following criteria
 - **Proximity**: *Coupled* for topography in non-periodic direction, else decoupled
 - Projection: Decoupled for bleaching stack and NA ≤ 0.5, else coupled
 - Laser: Decoupled

Mask Stack	Tool Simu	ulation Analysi	is Label/Co	mment		Re	egion Stack	Tool Simu	Ilation An	alysis Label	/Comment	t
Simulatio	on in Air						Stack Type PI	anar V				
Туре	Material	Thickness [um]	Top-Z (um	1]	Insert		Туре	Material	Thickness	:[um] Top-Z	[um]	
Resist Res	sist-generic	0.3	0.3		Delete		Resist Res	ist-generic	0.3	0.3		
Substrate Si-	crystalline						Substrate Si-o	rystalline				
					Import							
					Export							
					Edit lopo							
Resist Comme	ent Resist-aen	eric										
Positive							Insert Resist Comme	nt	•	Import	Exp	p
Positive	optical data fro	m database				~	Resist Comme	nt		Import	Exp	p
Positive	optical data fro	m database				~	Resist Comme	nt		Import	Exp	po
Positive	optical data fro Si-crystalline m] n	m database				~	Insert Resist Comme	nt ptical data fror	: database	Import	Exp	pc
Positive Positive Load resist of Resist-generic Wavelength [ni 365	pptical data fro Si-crystalline m] n 6.5282	m database				~	Insert Resist Comme	ptical data fror	n database	Import	Exp	pc
Positive Load resist of Resist-generic Wavelength [ni 365 405	pptical data fro Si-crystalline m] n 6.5282 5.4492	m database				~	Insert Resist Comme	ptical data fror	n database	Import	Exp	po
Positive Positive Load resist of Resist-generic Wavelength (ni 365 405 436	pptical data from Si-crystalline m] n 6.5282 5.449 4.84292	m database k 2.608 0.2401 0.09832				~	Insert Resist Comme Load resist o Resist-generic Use Post Ap	ptical data from Si-crystalline	n database	Import	Exp	po
Positive Dositive Load resist of Resist-generic Wavelength [m 365 405 436	pptical data fro Si-crystalline m] n 6.5282 5.449 4.84292	m database k 2.608 0.2401 0.09832				×	Insert Resist Comme Load resist o Resist-generic Use Post Ap Wavelength [nn	ptical data from Si-crystalline uply Bake Mode	n database	Dill A [um^-1]	Dill B [um^	ро `-1

Stack computation

s [cm^2/mJ] Dill C Rate [cm^2/mJ

BEAMER

Thank You!

support@genisys-gmbh.com

LAB TRACER MASKER

Pro **SEM**

VIEWER

Headquarters

USA Office

GenlSys Inc. P.O. Box 410956 San Francisco, CA 94141-0956 USA

D +1 (408) 353-3951
 ⊠ usa@genisys-gmbh.com

Japan / Asia Pacific Office

GenlSys K.K. German Industry Park 1-18-2 Hakusan Midori-ku Yokohama 226-0006 JAPAN (1) +81 (0)45-530-3306

+81 (0)45-532-6933

 \boxtimes apsales@genisys-gmbh.com