

April, 2024

LAB Simulation of Projection Lithography

Projection Simulation Webinar

Pre-Cursor

- IMPORTANT NOTICE: Please note that this session will be recorded. By joining these webinar sessions, you automatically consent to such recordings.
 - Q&A will not be recorded
- MS Teams essentials (App Users):
 - Right click on image, use "Pin" to enlarge

- This webinar is an overview / introduction to projection lithography simulation
 - It picks out essential ingredients, focus on applications in the field.
 - In case you want / need more depth -> Contact support@genisys-gmbh.com/

Projection Lithography

- 3D Exposure Simulation
- Application Cases
- Summary

3

Data from: https://en.wikipedia.org/wiki/Transistor_count

Data from: https://en.wikipedia.org/wiki/Transistor_count

5

Silicon Wafer

Chip Production Process

Silicon Wafer

Lithography scaling

Resolution Enhancement Techniques enabled Moors law

SEMATECH

Lithography Scaling

The Rayleigh Resolution Equation

$$R = k1 \frac{\lambda}{NA}$$

R = the smallest "half pitch" that can be printed

Improving resolution:

- Lower wavelength
- Increase Numerical Aperture
- Lower k1 factor

k1 – factor which includes photoresist improvements and application of **Resolution Enhancement Technologies**

Why Lithography Simulation?

• Simulation becomes a must for process optimization ahead of fabrication.

- Projection Exposure
- 3D Exposure Simulation
- Application Cases
- Summary

Lithography Simulation

• Projection simulation: optical exposure and resist development.

- LAB allows full simulation of projection lithography, including bulk intensity and 3D resist profile.
- In most cases, bulk intensity is enough for exposure analysis.

Outline

- Projection Exposure
- 3D Exposure Simulation
- Application Cases
 - Stack Optimization
 - Process Window
 - Resolution Enhancement
- Summary

Standing Wave

- Silicon substrate may reflect light strongely back to resist, resulting in process issues.
 - Standing waves cause resist edge roughness

Standing Wave

- Silicon substrate may reflect light strongely back to resist, resulting in process issues:
 - Stack reflectivity is sensitive to resist thickness
 - CD dependence on resist thickness (swing curve)

Resist Thickness Optimization

- Silicon substrate may reflect light strongely back to resist, resulting in process sensitivity to resist thickness.
 - Without stack change, the optimum resist thickness is at the top or valley of the reflectivity curve (Position A or B).

Bottom Antireflection Coating

- Bottom antireflection coating (BARC) is widely used to minimize substrate reflection, thus stabilize the process.
 - BARC thickness with the minimum reflection at resist/BARC interface is chosen for BARC layer design.

Reflectivity analysis of BARC layer

Bottom Antireflection Coating

- Bottom antireflection coating (BARC) is widely used to minimize substrate reflection, thus stabilize the process.
 - With minimized reflection, the CD swing curve shows better process stability to resist thickness.

Outline

- Projection Exposure
- 3D Exposure Simulation
- Application Cases
 - Stack Optimization
 - Process Window
 - Resolution Enhancement
- Summary

Focus Exposure Matrix Analysis

- Process tolerance with exposure dose and focus position variation is critical for mass production, for which depth of focus and exposure latitude of the process window are important parameters.
- Focus exposure matrix analysis is available in LAB simulation.
- CD and other important features (sidewall angle, etc.) are modeled.
- Two representations: Bossung curve and process window.

Process Window

- Bossung curve shows the CD variation with dose and defocus.
- Process window defines the dose and defocus range with accepted CD size.

Process Window

• For application cases with a big variation of pattern density, the process window for low pattern density (isoline) may also be simulated.

Process Window Overlap

• Overlaped process window achieves that of various pattern densities.

Process Window Restrictions

• The process window is adjusted by adding restrictions, according to fabrication limits.

n	
1.2	
0.000000	
0.000000	0.000000
0.000000	0.000000
	n 1.2 0.000000 0.000000 0.000000

Proces window with restriction

Process Window for Resist

• Except CD, process window analysis is available for resist profile related features, like sidewall angle, resist height, etc..

- Projection Exposure
- 3D Exposure Simulation
- Application Cases
 - Stack Optimization
 - Process Window
 - Resolution Enhancement
- Summary

Resolution Enhancement

- Photolithography transfers the pattern via optical imaging.
- The optical imaging limits the resolution of the pattern transfer.
- With the demands of smaller and smaller feature size, techniques have been applied to improve the resolution.
 - Optical proximity correction (OPC) via mask modification
 - Source optimization
 - Other techniques, e.g. phase shift mask

Grating Fabrication

- A grating with 200 nm feature size is designed. KrF projection exposure is expected to be able to fabricate it.
- The LAB simulation shows the inaccuracy of exposure: line shortening, corner rounding.

Rule OPC

- Rule-OPC allows user to correct the pattern as user wishes.
- The working procedure for rule-OPC:
 - The layout is first split into segments.
 - Each segment is modified depending on the user defined rules.
 - OPC rules can be previewed and analyzed in the Rule OPC panel.

Rule OPC

- Rule OPC modifies the mask by applying rules at various segments.
- The serif at the inner corner minimizes the corner rounding issue and serif at the outer corner solve the line end shortening issue.
- Rule OPC shows its flexibility for pattern with simple shapes.

Pattern Fidelity

• The following example shows pattern fidelity problem of a complex pattern: corner rounding, feature missing, etc..

Pattern Fidelity

• The following example shows pattern fidelity problem of a complex pattern: corner rounding, feature missing, etc..

Model OPC

Fully automated correction:

- Iterative process
- The exposure is modelled at layout edges (fast simulation)

Model OPC

Fully automated correction:

- Iterative process
- The exposure is modelled at layout edges (fast simulation)
 - Placing of evaluation points at layout edge
 - Compare intensity level
 - at taget: no action
 - Below or above target: move edges

Model OPC

Fully automated correction:

- Iterative process
- The exposure is modelled at layout edges (fast simulation), compared to target
- the layout is modified (shape correction) to compensate for mismatch
- Full layout import

Model-OPC

- In comparison, the pattern after model-OPC shows compensation at the corners.
- The pattern fidelity has been enhanced in corners and small features.

Model-OPC

- In comparison, the pattern after model-OPC shows compensation at the corners.
- The pattern fidelity has been enhanced in corners and small features.

Model-OPC

- In comparison, the pattern after model-OPC shows compensation at the corners.
- The pattern fidelity has been enhanced in corners and small features.

Attenuated Phase Shift Mask

- To improve the resolution, attenuated phase shift mask (PSM) is one technique.
 - Attenuated PSM has 180° phase shift from the space and a small transmission (e.g. 6%)

Aerial Image Analysis

- The quality of aerial image decides the subsequent exposure and controls the final resist profile.
- LAB simulates the aerial image and provides user access to classical merit of image quality:
 - image contrast
 - image log slope.

Imago contract	$I_{max} - I_{min}$
inage contrast	$-\frac{1}{I_{max}+I_{min}}$

Image contrast in analys	SIS VIEW
T Analysis View	
⊘ Axis	
Horizontal Axis: Defocus	~
Set of Curves: Dose	~
⊙ Set of Curve-Values:	
Select All	
⊖ Group Filter	
□ Bottom □ Conten □ Top □ Aerial □ BulkImage	
O Measure Filter	
CD Contrast Left	
Contrast Right NILS Left	
Sidewall Angle Right	
✓ Intensity Contrast	

Aerial Image Analysis

- The quality of aerial image decides the subsequent exposure quality and controls the final resist profile.
- LAB simulates the aerial image and provides user access to classical merit of image quality:
 - image contrast
 - image log slope.

Image log slope = $\frac{d(lnI)}{dx}$

Projection - Aerial Image - Region R1 \times X parallel, Y = 0 [um], Z = 0 [um] 0.5 Mask/Layer 1(0) → ¹⁰ 5 3 1D Locator -0.03728 0.4 Locator Type log Slope [%Dose/nm] ntensity [mJ/cm^2] 0.3 0.4150 0.4150 0.285 0.2 0.1 -0.4 -0.2 0.2 0.4 x [um]

Image log slope in 1D intensity image

Attenuated Phase Shift Mask

- To improve the resolution, attenuated phase shift mask (PSM) is one technique.
 - Enhancement of contrast and image log slope improves the resist edge steepness and thus the minimum resolvable CD of the exposure.

- Projection Exposure
- 3D Exposure Simulation
- Application Cases
 - Stack Optimization
 - Process Window
 - Resolution Enhancement
- Summary

Summary

- Process simulation is a mandatory tool in projection lithography. With a proper model, simulation helps fabrication efficiently. Above all, LAB has been used to
 - design bottom anti-reflection coating to improve process stability
 - Simulate the process window to check the process feasibility
 - design OPC to enhance the exposure resolution and pattern fidelity
 - analyze exposure quality in aerial image

BEAMER

Thank You!

LAB TRACER

support@genisys-gmbh.com

MASKER

Pro **SEM**

VIEWER

Headquarters

USA Office

GenlSys Inc. P.O. Box 410956 San Francisco, CA 94141-0956 USA

D +1 (408) 353-3951
⊠ usa@genisys-gmbh.com

Japan / Asia Pacific Office

GenlSys K.K. German Industry Park 1-18-2 Hakusan Midori-ku Yokohama 226-0006 JAPAN (① +81 (0)45-530-3306 (□ +81 (0)45-532-6933

⊠ apsales@genisys-gmbh.com

Projection Simulation Webinar 52