

3D electron beam lithography

App-note 3D e-beam

Motivation

- The need of 3D nanostructures as such as **lenses**, **blazed gratings**, **diffractive optical elements**, and **holograms** is increasing
- **3D lithography** is more **challenging** than binary lithography
 - Low contrast resist processes and accurate adjustment of exposure doses are of uptmost importance
 - Proximity effects modify CD and height of a structure
 - Resist development process affects the lateral development
- **BEAMER** offers a model-based 3D PEC that combines correction for electron scattering proximity and resist development process effects

Outline

- 2D lithography vs 3D lithography
- 3D e-beam lithography correction
 - Contrast Curve
 - BEAMER Shape Correction
 - Surface roughness
- Summary

General steps in lithography

Preprocessing

Softbake

2D vs 3D Correction

2D Correction

E = 0.5

Target: Require absorbed energy at all feature edges to have same value

3D Lithography Examples

921X 30KU HD: 30HM S: 20117 P: 00004

- Micro Lenses
- Lens Arrays
- •Blazed Gratings
- •Holograms
- Integrated Optics
- Prisms

•MEMS

Challenges in 3D Lithography

Challenges in 3D Lithography

Complex combination of:

- Exposure proximity effect
- Resist sensitivity curve
- lateral development effect

Remaining Resist [µm]

Outline

- 2D lithography vs 3D lithography
- 3D e-beam lithography correction
 - Contrast Curve
 - BEAMER Shape Correction
 - Surface roughness
- Summary

Here is what to do:

- 18 (or more) doses, each block:
 - Width > 3 × Beta (want flat region)
 - Length easy to measure with profilometer
 - Separated to not interact
 - We used 150 μm x 300 μm

Measuring a Contrast Curve

• Resist Thickness vs Dose values are inputs into BEAMER's 3D-PEC Module

Contrast Curve for Correction

al 3D-PEC	Accuracy Advance	ed Label/Commen	nt Quick Access					
ast Curve Mod	•							
laterial Archive	Material Database	Numerical Lase	er Contrast Curve					
face Definition T	pe AbsoluteThickne	55						
sist Contrast Par	ameter							
ork Range Min - I	Max [-] 0.000000				1.000000			
				Lat. Dev. Resolution [um]	0.600000			
ptical Parameter	5							
bsorption Defin	tion Type Extinction	Coefficient (k)						
Wavelength (ren)	n utbleached	n bitached	kurbleached [k blached []				
13	1.00	1.00	0.4399999	0.00000				
r Properties								
se Layer assig	ment file					Browse_		
Layer	Height [un]	iel Height	ret Dose	Grey Value		1		
	5.377258	0.597	0.243697	62.3863				
	5.358964	0.595	0.245233	62.7796 63.1723				
	5.322377	0.591	0.248296	63.5637				
	5.304083 5.285789	0.589	0.249834 0.251382	63.9575 64.3538				
	5.267495	0.585	0.25294	64.7525				
	5.249201 5.230908	0.583	0.254497 0.256049	65.1513 65.5486	Contrast Curve			
	5.212614	0.579	0.25761	65.9483	Original Thickness	s [um] 9		Import
	5.194320	0.575	0.260762	66.755		• • -	1	
	2123355	A 633	imout	Event Inset Day	Grey Value	Resist thickness [um]		Export
					0.000000	8.905130		- Insert Row
				Help OK Cano	1.000000	8.814754		Delete Row
					2.000000	8.728659	1	Delete Row
					3.000000	8.646438		
					4.000000	8.567715		
					5.000000	8.492141	-	
					6.000000	8.419395	-	
					7.000000	8.349183		
					8.000000	8.281231	-	
					9.000000	8.215291		
					10.000000	8.151136		
					11 000000	8 088556	-	
					Development Ra	ite Model		
					Dereiepinenene			
					Model			
					, induct			
					O Dev. Rate	Mack 4		
					Dill C Absorption	۱		
					DMC: E 270			
					1103. 3.370 ulli			

Contrast Curves Examples

- Using common materials
 - P(MMA-MAA 8.5%) Copolymer, EL11
 - Bake 180C, 3 minutes
 - ~ 1000 nm thickness
 - Development 1:3 MIBK:IPA
 60 s + IPA rinse for 15 s
- Want <u>lower</u> contrast
- The lowest dose is limited by hardware, so you don't want too much sensitivity or you won't achieve shallow depths!

Outline

- 2D lithography vs 3D lithography
- 3D e-beam lithography correction
 - Contrast Curve
 - BEAMER Shape Correction
 - Surface roughness
- Summary

3D Surface PEC

E-Beam Example

E-Beam Example

Outline

- 2D lithography vs 3D lithography
- 3D e-beam lithography correction
 - Contrast Curve
 - BEAMER Shape Correction
 - Surface roughness
- Summary

Mitigation of surface roughness

Dose dependence of layer (surface) roughness

Exposure of standard test pattern using different contrast curve

- leading to reduced roughness
- Multipass (for high doses) helps for reducing roughness

300

dose [uC/cm2]

Electron Beam 3D lithography

input GenISys

3-D e-beam lithography

520 nm 950k PMMA / Standard development at PSI

Arbitrary 3D Image

Arbitrary 3D Image

Arbitrary 3D Image

Outline

- 2D lithography vs 3D lithography
- 3D e-beam lithography correction
 - Contrast Curve
 - BEAMER Shape Correction
 - Surface roughness
- Summary

- The 3D PEC module in **BEAMER** enables to control the resist thickness
- Contrast curve maps resist thickness to energy, and the PSF corrects the proximity effect
- The resist development process plays a key role for thickness control and smooth surface
- Longer development times, low doses and multippass on high doses reduces suface roughness
- Temperature treatment after development smoothens the surface

Related Literature

2012

- A. Schleunitz, V. Guzenko, C. Spreu, M. Vogler, H. Atasoy, G. Gruetzner, and H. Schift, Enhancing 3-D structural variety by combination of electron-beam and nanoimprint lithography with thermal reflow, 56th International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication (EIPBN 2012), Waikoloa, USA, May 29 - June 1, 2012 (Invited Poster Presentation)
- A. Schleunitz, V.A. Guzenko, C. Spreu, M. Messerschmidt, H. Atasoy, M. Vogler, and H. Schift, 3-D microfabrication based on a glass transition temperature selective thermal reflow - towards optical applications, 56th International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication (EIPBN 2012), Waikoloa, USA, May 29 - June 1, 2012

2011

- V.A. Guzenko, N. Belic, N. Unal, A. Schleunitz, and C. David, Modeling and correction of lateral resist development effects in 3-D ebeam lithography, 24th International Microprocesses and Nanotechnology Conference (MNC 2011), Kyoto, Japan, October 24-27, 2011, 27P-11-66
- V.A. Guzenko, N. Belic, N. Unal, A. Schleunitz, and C. David, Modeling and correction of lateral resist development effects in 3-D ebeam lithography, 24th International Microprocesses and Nanotechnology Conference (MNC 2011), Kyoto, Japan, October 24-27, 2011, 27P-11-66
- A. Schleunitz, V.A. Guzenko, A. Schander, M. Vogler, and H. Schift, Selective profile transformation of electron-beam exposed multilevel resist structures based on a molecular weight dependent thermal reflow, J. Vac. Sci. Technol. B 29(6) (2011) 06F302; DOI:10.1016/j.mee.2010.12.046 (4 pp).
- A. Schleunitz, V. Guzenko, C. Spreu, M. Vogler, H. Atasoy, G. Gruetzner, and H. Schift, Enhancing 3-D structural variety by combination of electron-beam and nanoimprint lithography with thermal reflow, 37th International Conference on Micro- and Nano-Engineering (MNE 2011), Berlin, Germany, September 19-23, 2011, P-LITH-071 (Best Poster Award Winner in category Lithography and Systems)

- A. Schleunitz and H. Schift, Fabrication of 3-D nanoimprint stamps with continuous reliefs using dose-modulated electron beam lithography and thermal reflow, J. Micromech. Microeng. 20 (2010) 095002; DOI:10.1088/0960-1317/20/9/095002.
- N. Unal, D. Malahu, O. Raslin, D. Ritter, C. Sambale and U. Hofmann, *Third Dimension of Proximity Effect Correction (PEC), J. Microelectronic Engineering Volume 87, Issue 5-8, May 2010, pages 940-942*

BEAMER

Thank You!

support@genisys-gmbh.com

LAB TRACER MASKER

Pro **SEM**

VIEWER

Headquarters

USA Office

GenlSys Inc. P.O. Box 410956 San Francisco, CA 94141-0956 USA

D +1 (408) 353-3951
 ⊠ usa@genisys-gmbh.com

Japan / Asia Pacific Office

GenlSys K.K. German Industry Park 1-18-2 Hakusan Midori-ku Yokohama 226-0006 JAPAN ① +81 (0)45-530-3306 圖 +81 (0)45-532-6933

 \boxtimes apsales@genisys-gmbh.com